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We prove a theorem on the instability of the equilibrium of a dissipative sys- 

tern in the absence of a maximum of the force function. The dissipation is 
partial and is absent only in one of the degrees of freedom. The proof is based 
not on the linearization of the differential equations but on Liapunov’s direct 

method and uses a somewhat modified form of Krasovskii’s theorem. The insta- 
bility is established for systems with arbitrary nonlinear dissipative forces and 

an isolated equilibrium. 

1. Strtement of the problem. Let q’ --. (11,. q2, . . . , q,,) be the gene- 
ralized coordinates of a holonomic mechanical system with ?I degrees of freedom (here 

and later the prime denotes transposition), We assume that the kinetic energy is a quad- 
ratic form in the generalized velocities Q,‘, q?‘, . . . 7 q,1 

where .l (‘1) I( cli, 11. W e assume that the functions “ij (q) are continuously differ- 
entiable in some neighborhood of the point q -:O, the matrix 11 is symmetric, and quad- 
ratic form (1.1) is positive definite in q . 

Let the force function li (‘I) also be continuously differentiable and, besides conser- 

vative forces, let there act only dissipative forces, so that the equations of motion have 
the form 
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Here 
d I dt (dL / dqi’) - dL i dqi = Qi (q, q’) (1.2) 

moreover 

L (rl, 4’) = T (4, q’) + u (4) 

D(q, q’)= iQi(Q, q')qi'GO 
i=l 

(1.3) 

for all values of (q, q’) in some neighborhood of (q = 0, q’ = 0) . 
The generalized dissipative forces Qi (q, q’), i = 1, 2, . . ., n, are continuous 

in q and q’ and Qi (q, 0) = 0, i = 1, 2, . . ., n, for all values of q. Since T is 
positive definite, the equations of motion can always be reduced to the standard form 

Q” = f (41 4’) (1.4) 

Each solution of system (1.4) corresponds to a possible motion. We assume that the sys- 
tem (1.4) being considered satisfies the conditions for the existence (for t > 0) and 
the uniqueness of the solution, and we denote the solution corresponding to the initial 

values q (t = 0) = q. and q’ (t = O)=q,‘, by q (qo, qo’, t). We assume, further, 
that the system has an equilibrium position at q = 0, so that 

aulaqi = 0 for q=O, i=i,2 ,..., n (1.5) 

We consider the question of the Liapunov stability of this trivial solution. Without loss 

of generality we assume that U (0) = 0. 
If at the point q = 0 the function U has a strict maximum (strict in the sense de- 

fined by Bourbaki [l]: “maximum relatif strict”), then it immediately follows from 
Liapunov’s theorem that the equilibrium position is stable, Indeed, choosing T - u 
as the Liapunov function, by virtue of system (1.2). we have 

‘(T-uU)ldt = i Qi(qv 4') qi' 
i=l 

that is what shows the stability of the solution. When D (q, q’) s 0 we have the 

Lagrange-Dirichlet theorem. If D (q, q’) is negative definite in q’ and the equilibrium 

position is isolated, i. e. if some neighborhood of the point q = 0 exists in which there 
are no other equilibrium positions, then the equilibrium is asymptotically stable. If the 

force function U (q) does not have a maximum at q = 0, then in dissipation-free sys- 

tems (D (q, q’) = 0) the equilibrium is apparently unstable in all cases of practical 
interest. However, at the level of strict theoretical investigations additional conditions 
must be imposed on the function U (q) . This is shown by the very well-known counter- 

example of Painleve p]. 
The mathematical difficulties arising in the proof of such instability theorems are 

quite considerable in cases of both dissipative as well as nondissipative systems (see 
[2 - 61). If the equilibrium position q = 0 is isolated and if in any arbitrarily small 
neighborhood of q = 0 there are points at which U takes positive values, then only 
when the function D (q, 4’) is negative definite in q’, a trivial solution of this prob- 
lem is known: the equilibrium is unstable. This can be derived from a modification of 

Liapunov’s theorem (for example, see Theorem 15.1 in [7]). On the other hand, let us 
assume that the dissipation is partial. In this case it is still not known whether the ab- 
sence, in the above defined sense, of a maximum of U (q) implies that q = 0 is 
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necessarily unstable. In principle we need to keep in mind the possibility of the stabi- 
lization of a previously unstable equilibrium by the dissipative forces. This question is 
extremely difficult and no general results are known to date, Below we prove instability 
for the isolated equilibrium case if dissipation is defined on n - 1 generalized coor- 
dinates and if in any arbitrarily small neighborhood of q = 0 we can find points qi 
such that U (qi) > 0. We say that the dissipation is reduced to n - 1 coordinate if 

Q, G 0, this is assumed below. We need the following Theorem A on the instability 
of the trivial solution z = 0 of the differential equation z’ = X (z). 

Theorem A. Let the following conditions be fulfilled : 
1”. The function V (5) is defined and continuously differentiable in 

G = 14 II4 G HI, V (0) = 0, H > 0 

2’. dV / dt > 0 in G along the trajectories of the equation 2’ = X. (.x). 

3’. A sequence 9, x2, . . ., V (z’)>O, i = 1, 2,. . ., ~5 ---z 0 as i --> co 
and,a certain number Hi, H > Hi > 0, exist such that not even one of the solutions 

5 (Xi, t) contains a semitrajectory starting in G, = {z 1 11~11 < H,}, along which 
dV / dt s O.Then 5 = 0 is unstable. 

We say that a solution 5 (9, t) contains a semitrajectory starting in Gi, along which 
dV / dt = 0, if some t, > 0 exists such that the solution lies wholly in GI for 0 < 
t < t, and if for t > t* we have dV / dt zz 0 for all 5 (9, t,.) such that IC (9, 

t) EG,, t, 6 t < t,,. This theorem is a direct corollary of Krasovskii’s Theorem 

15.1 in [7], where it is required that no semitrajectories exist along which dV / dt 3 0. 
However, such semitrajectories can be allowed if they start outside the specified fixed 
neighborhood of zr = 0. Thisdoes not alter the proof. 

2. Inltobility theorem for systems with prrtirl dlaliprtion. We 
give the precise statement of the instability theorem announced above. 

Theorem. let a holonomic dissipative mechanical system with n degrees of free- 

dom have an equilibrium at q = 0 and let it satisfy the following conditions: 

1”. The equilibrium is isolated ; 
‘. In an arbitrarily small neighborhood of q = 0 there are points qi such 

that u(:)>o (U(0) ~0); 

3”. The function n-1 

o(q, 4') = 2 Qj(q, 4’)q.i 
j=l 

is negative definite in ql’, qz’, . . ., qi_l for all q from some neighborhood of q = 

0,while Q,l (q, q’) = 0; 
4O. The coefficients as,, (s = 1, 2, . . . , n - 1) occurring in the expres- 

sion for the kinetic energy do not depend on q,,, while an,, is a constant. Then the equi- 
librium is unstable. 

Proof. The equilibrium q = 0 is isolated, therefore, a number .H* > 0 exists 
such that q = 0 is the unique equilibrium position of the system in G* = {(q, q’) \ 

II q II + II Q’ II < ff*1* T P o rove the instability theorem we need two lemmas, corre- 

sponding to two types of sequences of the form 

($9 (0) E G*, i = 1, 2, . . . ($, (q’)i) r, (0, 0) as i-f 00 

2’ (qi, (q-y) - u (@I < 0 
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Such sequences can always be found if the theorem’s hypotheses are fulfilled, 
Type 1, We call ($, (g’)i), i = i, 2, , , ,, a sequence of Type 1 if a certain 

number HI*, H* > HI* > 0 exists such that not even one of the motions Q (@, 

(g’)i, t), q’ (qi, (q’)f, t) (the solution of (1.4)) contains a semitrajectory starting in 

G,* = {(a, q‘) I II 4 II + II f 11 < HI*), along which D (q, q’) = 0. 
Lemma 1. If all the hypotheses of the theorem are fulfilled for some mechnioal 

system and if a sequence of Type1 exists, then the equilibrium Q = 0 is unstable. 
This follows immediately from Theorem A. Having set t’ = --T -/- U, we have 

v’ = -a, and all of the requirements of Theorem A are fulfilled, 

Type 2. We call (44, (Q*)*) a sequence of Type 2 if a number Ha* t N* > 
Ha* > 0, exists such that alf motions 4 (@, (q’)i, t), q’ (@, (q’>f, i) contain semi- 

trajectories starting in G,* = ((p, p’) 1 fi q 1 + 1 d 1 S Hs*), along which D 6~ 
q’) Es 0. 

Lemma 2, If all the hypotheses of the theorem are fulfilled for some mechanical 
system and if a sequence of Type 2 exists, then the equilibrium Q = 0 is unstable. 

To prove this we examine one of the motions q (qi, (q’)i, t) for an arbitrary i. Let 
us show that for each i the phase point reaches the boundary of region Gs* in finite 
time. If D z.z 0, then Q*’ = 9s’ = . . . = qn_l = 0, gri = eli, qzi = ciz, . . ., 

& = &I (c,i = const, s = I, 2,... 7 n - $1. Since the first zz - 1 coordi- 
nates are constant, the motion exists only in one degree of freedom. (For this case, as 
will be shown, we can exhibit instability without particular difficulty), 

By t* we denote the ma~i~nde of t such that D (Q (@, (g’)it t), Q’ ($3 (4’)“t 
$1) = 0 for t 3 $8. The point (4 ($7 fq*)iY t), q* (@> (d)l, t)) belongs to G,*. We 
show that the algebraic equation 

$ U (c*$ C& “‘, c:_r, QJ = 0 
(2.3) ?z 

has no solution in G,* on the trajectory being considered (t > &). We consider the 

equations of motion 

P = 1, 2, . . . . n 

which follow from (1.2) when Qr = 0. From Q~ = cSi, s = 1, 2, . 9 ‘3 n - 1, 
and from assumption 4’ of the instability theorem (assumption 4’ of the instability the- 

orem can be replaced by the weakened condition %%z,, / bg, = a% a i %%, f =I . 
1, 2, . * ., n), we have 

arn5%C - au/aq, - 0, r := 1, 2, . . . . 71 GL52 

If 6Uldq, = 0 for some value of Q,, , then gn’* = 0’ also, since arm > 0. Then 
from the first n - i equations of (2.2) it follows that dU / 8qr = 0 (r = I, 2. , . . 
. . *, n - 1) at this same point, This is impossible at any point of Gz*, besides the 
center, since the equ~~~b~~~rn is isolated, However, the phase point cannot approach the 
origin because hi = T - U < 0. This signifies that Eq,(2.1) does not have soluzions 

on the trajectory being considered. 
The motion 4 {@, (q’fi, t) takes place only in one degree of freedom (corresponding 

to 9,)) therefore, it should belong to one af the following types : 
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g’ (t) = (Cli, cgi, ‘“, d-1, qn (f)), (g’(t))’ r= (0, 0, . . .Y 0, 411’ (t)) 

(q”)’ = (Clj, c,:, a**, CL, f-In*) 

2”. (4 (% q’(O) E 6 *, t > tie and qn ($, ((r’)ij t) is periodic ; 

3”. (CI (0, rl’ (t)) reaches the boundary of Ga* in finite time. * 
There is no such simple classification for motions in more than one degree of freedom. 
In Case 1” the equilibrium position would be at the point is*, 0) re G,* , which fol- 

lows from the continuity of the right-hand sides of (1.4). This equilibrium would be 

different from q = 0, 4’ = 0, since hi < 0. Consequently, Case 1” can be excluded 
(by assumptiona unique-equilibrium point exists at the origin in G,*). 

In Case 2” the function qn (t) varies in the closed interval [g,, gal. The function 

1 dU/d% 1 is continuous in Qn and, consequently, achieves a minimum on this interval. 
From what was stated above we know that this minimum does not equal zero. Conse, 

quently, a number ai > 0 exists such that I&!_J / I@,, I> ai on the motion being con- 
sidered,i.e. the function U (cii, c?;, . . . , ci-*, q,,) is strictly monotone in Q,, . and 
the equation illi = - U (qTl) has no more than one solution in [gi, g,]. Consequently, 
there is no more than one point with zero velocity in the motion 4 (@, (q’)i, t) for 
t > ti. This contradicts the assumption of periodicity of the solution, and Case 2” also 
can be excluded. 

Consequently, only Case 3* is possible. Thus, the sequence f@, (q’)i) -+ (0, 0), i = 

1, 2,... exists and, moreover, each solution (q (qi, (q’)i, t), q’ (qi, (q’)i, t)) reaches 
the boundary of region G, * in finite time. The equilibrium is unstable and the proof of 

Lemma 2 is completed. 

The proof of the instability theorem is now obvious. Let us consider an arbitrary se- 

quence (q’, (q’)f) E G*, i = 1,2, . . ., satisfying the conditions 

(qi, (q’>i) ----, (0,O) as t-+oo 

T (@, (4’)i) - u (4’) < 0, - i = 1, 2, . . . 

From this sequence let us try to pick out a subsequence of Type 1. If this is possible, 
then the instability follows from Lemma 1. If this is impossible, then there should exist 
a certain p such that for i > p all terms of the sequence correspond to motions which 
contain semitrajectories starting in G*, along which I) (4, d) = 0. This signifies that 
a sequence of Type 2 exists. Then the instability is guaranteed by Lemma 2, and the 
proof of the instability theorem is completed. 

One requirement of the instability theorem can be slightly weakened. It is not obli- 
gatory to require that Q, (q, q’) =O f or all (4, ~“)EG*, but it suffices to require that 
Q, equal zero in G** c G*, where 

G*” = G’ 0 {(q, 4’) 1 T (4, q’) - 1’ (4 G “I 

This is obvious since in the theorem’s proof we considered only the motions with the 
initial conditions (qi, (q’)i) E G** under which the phase points can reach the bound- 

ary of G** only at points belonging also to the boundary of G*. 
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3. Some unrn:wrred quertionr. In the instability theorem proposed here 

we have dealt exclusively with systems with dissipation absent only in one of the degrees 

of freedom. Motions on which energy dissipation does not take place and which possibly 
exist can then be treated as the solutionsofthe equations of motion of a system with one 
degree of freedom. On the other hand, in the case of a conservative system with one de- 
gree of freedom it can be shown that each motion with a negative mechanical energy 
T - U < 0 leaves some neighborhood of an isolated equilibrium position. This still 

has not been proved for systems with several degrees of freedom. If such a proof were 
to be obtained, we could generalize the proposed theorem to the case of systems with 
arbitrary partial dissipation. 

Chetaev [4] proved that all motions with zero initial values of the momenta leave a 

neighborhood of the equilibrium position. However, this is insufficient for the generali- 

zation of the proposed instability theorem, because such an assertion should concern all 
motions starting in G**. Possibly we can succeed in deriving this property by means of 
geometrical reasoning. If the problem is formulated on the basis of the Jacobi’s princi- 

ple, then the problem reduces to the question of the behavior of geodesics in a pseudo- 
Riemannian space. The answer can apparently be found using the existence theorems of 

the calculus of variations (for example, see[5] ) . 

The author conjectures that the following generalization of the proposed instability 
theorem is valid. Let a discrete holonomic autonomous dissipative (D (q, 4’) is con- 

stantly negative) system have an isolated equilibrium position at q = 0. In an arbit- 
rarily small neighborhood of the equilibrium there exist points qi at which U (qi) > 0, 
then the equilibrium is unstable (U (0) = 0). Th e conditions that the equilibrium posi- 

tion is isolated and that U can take positive values are essential. 
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